The basic principle of a Born-Haber cycle
Drawing a Born-Haber cycle step 1
Na (s) → Na (g)? ? ? ? ? ?ΔHat??= +108 kJ mol?-1
?Cl2?(g) → Cl (g)? ? ? ?ΔHat??= +121 kJ mol?-1
Drawing a Born-Haber cycle step 2 - creating the gaseous atoms
Na (g) → Na+?(g) + e–? ? ? ? ??ΔHie??= +500 kJ mol-1
Cl (g)?+ e–?→ Cl-?(g)? ? ? ? ? ?ΔHea??= -364 kJ mol-1
Drawing a Born-Haber cycle step 3 - creating the gaseous ions
Na (s) +??Cl2?(g)?→ NaCl (s)? ? ? ? ? ? ΔHf??= -411 kJ mol?-1
Na+(g) + Cl-(g) → NaCl (s)? ΔHlatt?
Drawing a Born-Haber cycle step 4 - completing the cycle
Constructing a Born-Haber cycle for KCl
Construct a Born-Haber Cycle which can be used to calculate the lattice energy of potassium chloride
Answer
Constructing a Born-Haber cycle for MgO
Construct a Born-Haber Cycle which can be used to calculate the lattice energy of magnesium oxide
Answer
ΔHf??= ΔHat??+ ΔHat??+?IE?+?EA?+ ΔHlatt?
ΔHf??= ΔH1??+ ΔHlatt?
So, if we rearrange to calculate the lattice energy, the equation becomes
ΔHlatt??= ΔHf??- ΔH1?
Calculating the lattice energy of KCl
Given the data below, calculate the ΔHlatt??of potassium chloride (KCl)??
Answer
Step 1:?The corresponding Born-Haber cycle is:
Step 2:?Applying Hess’ law, the lattice energy of KCl?is:
ΔHlatt??= ΔHf??- ΔH1?
ΔHlatt??= ΔHf??- [(ΔHat??K) + (ΔHat??Cl) + (IE1?K) + (EA1?Cl)]
Step 3:?Substitute in the numbers:
ΔHlatt??= (-437) - [(+90) + (+122) + (+418) + (-349)]?= -718 kJ mol-1
Calculating the lattice energy of MgO
Given the data below, calculate the of ΔHlatt??magnesium oxide of magnesium oxide (MgO)
Answer
Step 1:?The corresponding Born-Haber cycle is:
Step 2:?Applying Hess’ law, the lattice energy of MgO is:
ΔHlatt??= ΔHf??- ΔH1?
ΔHlatt??= ΔHf??- [(ΔHat??Mg) + (ΔHat??O) + (IE1?Mg) + (IE2?Mg) + (EA1?O) + (EA2?O)]
Step 3:?Substitute in the numbers:
ΔHlatt??= (-602) - [(+148) + (+248) + (+736) + (+1450) + (-142) + (+770)]
= -3812 kJ mol-1
转载自savemyexams
? 2025. All Rights Reserved. 沪ICP备2023009024号-1