Euclid比赛规则
1、比赛时长共2.5个小时,150分钟
2、Euclid共有10道题,无选择题,均为简答题,每题都有2-3小题:
一些题目只需写出最后的答案,一些题目需要写出计算过程,一些题目需要写出完整证明过程。评分标准不光是以最终结果正确与否给分,也会根据答题步骤及思路和技巧来给分。如果答题步骤或方式过为散乱,即使最终结果是正确的也不会给予满分。
3、可使用计算器,且大部分计算器均可使用,但还有以下功能的除外:
(1)网络功能
(2)与其他设备沟通功能
(3)存储功能
(4)电脑代数系统
(5)动态几何软件
1、Grade 12 open courseware:
这是一个Center for Education in Mathematics and Computing(CEMC)开设的网课,有数学和计算机的课程。滑铁卢大学推荐参赛者上Advanced Functions and Pre-Calculus(高端方程与预备微积分)和Calculus and Vectors(微积分与向量)两门课程
2、Mathematics Resource Manual for High School Students and Undergraduate Studies:
这本书盘点了高中数学的主要内容,不仅能成为准备学术活动的利器,也能帮助同学们由高中更好地进入大学数学的学习
3、Euclid eWorkshop:
这是CEMC为Euclid打造的准备材料,类似于一个带有例题的概念表,盘点了参加Euclid Contest所需要的知识点
4、往届比赛题目:
往届比赛题目是很珍贵的准备学术活动的资源,做这些题目不仅能帮助参赛者复习知识点,也能让他们更加熟悉Euclid的出题方式和套路,更好地应对比赛
(具体内容根据学生的情况调整)
Main?Topics | Selected?Essential?Details?(Materials?with?*?are?aimed?for?the?potential?last?Problems) | |
Number?Theory | Prime?factorization | Number?of?factors,?Sum/Product?of?factors |
LCM?and?GCD,?*Euclidean?Algorithm?and?Bézout's?Theorem | ||
Congruence?and?Modular?Algebra | Principles?of?Modular?Calculations | |
*Euler’s?Theorem/Fermat's?Little?Theorem | ||
*Chinese?Remainder?Theorem(CRT) | ||
Digits?and?Base-n?Representation | Mutual?Conversion?between?different?bases | |
Diphantine?Equations | Estimation?and?Molular?Method | |
Algebra | Sequences | Arithemetic?and?Geometric?Sequences |
Periodic?Sequences,?*Recursive?Sequences?and?Characteristic?Equation?Method | ||
*Conjecture?and?Mathematical?Induction?Proof | ||
Functions?and?Equations | Elementary?Functions?(Linear,?Quadratic,?Exponential,?Logarithmic,?Trigonometric)?and?their?properties | |
Functional?Equations | ||
*Gaussian/Floor?function | ||
Inequalities?and?Extreme?Value?Problems | Simple?Polynomial?Inequalities | |
AM-GM?Inequality,?*Cauchy?inequality | ||
Polynomials | Division?Algorithm?of?Polynomials?and?the?Remainder's?Theorem | |
Fundamental?Theorem?of?Algebra?(Polynomial?Factorization)?and?Vieta's?Theorem | ||
The?Rational?Root?Theorem | ||
Geometry | Triangles?and?Polygons | The?Law?of?Sines,?The?Law?of?Cosines |
Area?Method?and?Heron's?formula | ||
*Menelaus's?theorem,?Ceva's?theorem,?Stewart?Theorem | ||
Centers?of?triangle | ||
Circles | Chords,?Arcs,?Tangents,?Inscribed?and?Central?accepted?angles | |
Cyclic?Quadrilateral | ||
Power?of?a?Point?Theorem,?*Ptolemy's?theorem | ||
Basic?Coordinate?Geometry | Coordinate?System?and?Equations?of?lines,?Circles | |
Basic?Solid?Geometry | Lines?in?space,?Planes;?Rectangular?Box,?Pyramids,?Prisms,?Sphere?and?Cones,Frustums | |
Combinatorics | Basic?Counting?Principle | Sum?Rules?and?Product?Rules |
Permutations?and?Combinations | Combinatorics?numbers?and?*Combinatorics?identities | |
Grouping?Theorems,?Boards?Method?and?the?Problem?of?Balls?into?Boxes | ||
Logic?reasoning | *Pigeonhole?principle | |
2019Euclid欧几里得数学学术活动, 75-80分部分2人,分布于武外英中等学校, 84-87分部分5人,分布于武外英中,Bedstone college等学校,上海大同中学等 ?90%以上优秀奖
2021Euclid欧几里得数学学术活动,90分+有4人,分布于Oversea international school ,西安铁一中 ,深圳国际交流学院,南京外国语等学校,80分+有12人,共计33位学生获得DISTINCTION ,翰林学员参赛获奖率达50%。
? 2025. All Rights Reserved. 沪ICP备2023009024号-1